首页> 外文OA文献 >Object Classification with Joint Projection and Low-rank Dictionary Learning
【2h】

Object Classification with Joint Projection and Low-rank Dictionary Learning

机译:具有联合投影和低秩词典的对象分类   学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

For an object classification system, the most critical obstacles towardsreal-world applications are often caused by large intra-class variability,arising from different lightings, occlusion and corruption, in limited samplesets. Most methods in the literature would fail when the training samples areheavily occluded, corrupted or have significant illumination or viewpointvariations. Besides, most of the existing methods and especially deeplearning-based methods, need large training sets to achieve a satisfactoryrecognition performance. Although using the pre-trained network on a genericlarge-scale dataset and fine-tune it to the small-sized target dataset is awidely used technique, this would not help when the content of base and targetdatasets are very different. To address these issues, we propose a jointprojection and low-rank dictionary learning method using dual graph constraints(JP-LRDL). The proposed joint learning method would enable us to learn thefeatures on top of which dictionaries can be better learned, from the data withlarge intra-class variability. Specifically, a structured class-specificdictionary is learned and the discrimination is further improved by imposing agraph constraint on the coding coefficients, that maximizes the intra-classcompactness and inter-class separability. We also enforce low-rank andstructural incoherence constraints on sub-dictionaries to make them morecompact and robust to variations and outliers and reduce the redundancy amongthem, respectively. To preserve the intrinsic structure of data and penalizeunfavourable relationship among training samples simultaneously, we introduce aprojection graph into the framework, which significantly enhances thediscriminative ability of the projection matrix and makes the method robust tosmall-sized and high-dimensional datasets.
机译:对于对象分类系统,现实世界应用中最关键的障碍通常是由类别内的较大变异性引起的,该变异性是由有限的样本集中的不同照明,遮挡和损坏引起的。当训练样本被严重遮挡,损坏或具有明显的照度或视点变化时,文献中的大多数方法将失败。此外,大多数现有方法,尤其是基于深度学习的方法,都需要大量的训练集才能获得令人满意的识别性能。尽管在通用的大型数据集上使用预训练网络并将其微调为小型目标数据集是广泛使用的技术,但是当基础数据集和目标数据集的内容非常不同时,这将无济于事。为了解决这些问题,我们提出了一种使用双图约束的联合投影和低秩字典学习方法(JP-LRDL)。所提出的联合学习方法将使我们能够从具有较大类内可变性的数据中学习可以更好地学习词典的功能。具体地,学习结构化的类别专用词典,并且通过在编码系数上施加图形约束来进一步提高区分度,这使类别内紧凑性和类别间可分离性最大化。我们还对子词典强制实施低等级和结构性的不一致性约束,以使其对变体和异常值更加紧凑和健壮,并分别减少它们之间的冗余。为了保持数据的固有结构并同时惩罚训练样本之间的不利关系,我们在框架中引入了投影图,这大大增强了投影矩阵的判别能力,并使该方法对小型和高维数据集具有鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号